

Bauteil- & Prozessentwicklung, Füllsimulation, Prototyping, Werkzeug- & Materialbemusterung

Der ideale Entwicklungspartner für Zulieferer, Materialhersteller und OEM

Kompetent

Expertise & Knowhow bei der Entwicklung von Bauteilen sowie der Auslegung und Opti-mierung verschiedener Fertigungsprozesse

Schnell & flexibel

Maßgeschneiderte, individuelle Lösungen für spezifische Kundenanforderungen, schnell und termingerecht umgesetzt

Wirtschaftlich

Parallele Betrachtung geeigneter Fertigungsverfahren und deren Wirtschaftlichkeit für die spätere Bauteilherrstellung

Nachhaltig

Ressourceneffizienter Einsatz von Materialien und Technologien unter Berücksichtigung von Vorgaben zur Energiebilanz

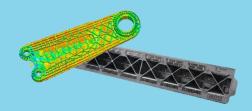
Gemeinsam

Einbindung des Kunden und regelmäßiger Austausch für eine bestmögliche Umsetzung und kundenseitigen Aufbau von Knowhow

Von der Idee bis zum serienfähigen Prozess – Alles aus einer Hand!

Entwicklung & Simulation

Prozessauslegung


Ziel erreicht: Gewichtsreduktion von über 50% von 600 auf 280 g und seriengerechte Umsetzung der Produktionsprozesse inkl. Kleinserienfertigung im acs

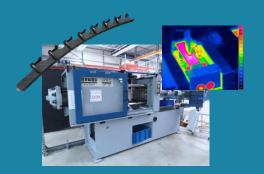
acs automotive center

Auslegung & Optimierung

- Technologien:
 - Spritzgießer
 - Umformung thermoplastischer Kunststoffe
- Belastungsgerechte Auslegung und Optimierung von Kunststoffbauteilen
- Entwicklung von Hybridstrukturen, auch in Kombination mit Metall
- Füll- und Umformsimulation

Material

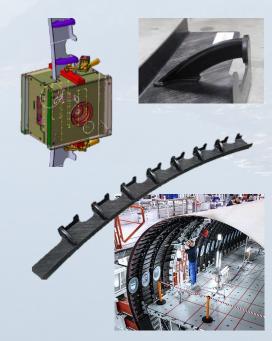
- Materialbemusterung
- Prüfkörperherstellung
- Statische und dynamische Validierung von Prüfkörpern
- Klimalagerung, Konditionierung und Trocknung


Werkzeug

- Konzeptionierung von Prototypen- und Serienwerkzeugen sowie Werkzeugeinsätzen für bestehende Stammwerkzeuge
- Bemusterung und Abnahme von Neuwerkzeugen

Prozess & Prototyping

- Prozessentwicklung und Parameterfindung
- Herstellung von Prototypen und Kleinserien
- Prozessanalyse und -optimierung
- Thermographie
- Prozessberatung vor Ort

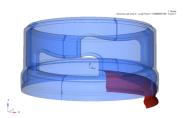

Entwicklung und Optimierung von Bauteilen, Werkzeugkonzepten und Fertigungsprozessen hinsichtlich Qualität und Wirtschaftlichkeit, Herstellung von Prototypen und Kleinserien

Integralspant aus thermoplastischem Kunststoff

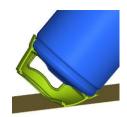
acs | automotive center

Individuelle Anforderungen erfolgreich umgesetzt!

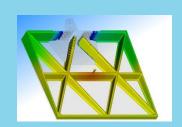
- Prozesseinrichtung und Herstellung thermoplastischer Integralspante für den Flugzeugrumpf
- Automatisierte Prozesseinrichtung im acs inkl.
 Erwärmung, Handling und Umformung der Halbzeuge (Breite: 3.200 mm)
- Thermografische Untersuchung zur Optimierung der Halbzeugerwärmung
- Parameterfindung und Prozessoptimierung hinsichtlich Bauteilqualität und Reproduzierbarkeit
- Werkzeugkonzeptionierung und Einrichtung eines Spritzgießprozesses zur anschließenden Anbindung weiterer Kunststoffkomponenten

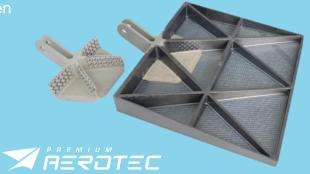


Analyse und Optimierung eines Klemmrings


Starke Belastungen des Kunststoffrings eines Bierkegs durch Klemm-, Verdreh- und Stoßkräfte:

- Simulative Analyse des IST-Zustands und Optimierung der Keg-Ringe hinsichtlich Abzieh- und Verdrehkräfte
- ► FEM-Falltest des optimierten Kopf- bzw. Fußrings
- Material und Komponententests unter Einsatz der optischen Messtechnik (gom)
- Spritzgießsimulation zur Prozessoptimierung
- Konstruktionsanpassungen und Gewichtsoptimierung




Prototyping einer hybriden Baugruppe

Entwicklung und Herstellung einer hybriden Baugruppe aus Titan unc PEEK ohne Fügeelemente:

- ► Erstellung von Probekörpern im Labormaßstab mittels Einlegen von Titankernen und Um- bzw. Durchspritzen des Einlegers mit PEEK
- Konzeptionierung des Spritzgießwerkzeugs inkl. rheologischer Berechnung zur Bestimmung des Fließverhaltens
- Prozesseinrichtung und Parameterbestimmung

Ziel erreicht: Nach Analyse und Optimierung serienreifes und funktionsfähiges Bauteil bzw. erfolgreiche Prozesseinrichtung und Herstellung von Prototypen

Materialbemusterung von Spritzgießgranulat

Materialbemusterung, Prozessentwicklung und Herstellung von Kunststofftuben für Schraubsetzversuche:

- Prozesseinrichtung und Bestimmung geeigneter Prozessparameter für verschiedene Materialien
- Werkzeugkonzeptionierung und -bemusterung
- Prozessoptimierung zur Vermeidung von Lunkern, Poren und Rissen sowie Minimierung des Ausschusses und des Verzugs
- Kleinserienfertigung von Tuben aus unterschiedlichen Kunststoffgranulaten

Umformen faserverstärkter Halbzeuge

Bestimmung von Prozessparametern zur Umformung eines thermoplastischen Organoblechs mittels S-Schlagwerkzeug:

- ► Umformung mittels acs-eigenem S-Schlagwerkzeug
- Parameterfindung und Erstellung von Prototypen
- Analyse der Ziehtiefe, Wanddickenverteilung und Bauteiltemperaturen mittels Thermographie sowie Härte und Festigkeit

Automatisierter Prozessablauf inkl.
 Halbzeugerwärmung in IR-Einheit,
 Bauteilhandling mit Handlingsroboter
 und Spannrahmen

Untersuchung von Haftvermittlersystemen

Wir entwickeln für Sie neue, innovative Lösungen!

Untersuchung der Haftung unterschiedlicher Materialien in Hybridbauteilen unter Verwendung verschiedener Haftvermittler für einen Kundenkreis in einem Gemeinschaftsprojekt:

- Herstellung hybrider Prüfkörper in unterschiedlichen Materialkombinationen aus Metall/Kunststoff/Organoblech
- Validierung von Lösungsansätzen in praktischen Versuchen
- Erstellung von Materialkarten zum simulativen Abgleich sowie einer Datensammlung zur methodischen Auswahl geeigneter Haftvermittler
 - Geringer Eigenaufwand für Teilnehmer und Erweiterung des Knowhows zu Materialien, Technologien und Bauteildesign bei niedrigeren Projektbeiträgen

Seite 8

Anlagen, Werkzeuge und Peripherie in der Kunststofftechnik

Spritzgießmaschine

- Herstellung von Prüfkörperr und Prototypen
- Schließkraft: 100
- max. Spritzvolumen: 145 cm³
- max. spez. Druck: 2.300 bal
- 2 Kernzüge
- min. Einbauhöhe: 250 mm
- Werkzeugtemperierung: 20 bis 160 °C
- Max. Massetemperatur: 450 °C
- Trockenlufttrockner: 60 bis 160 °C

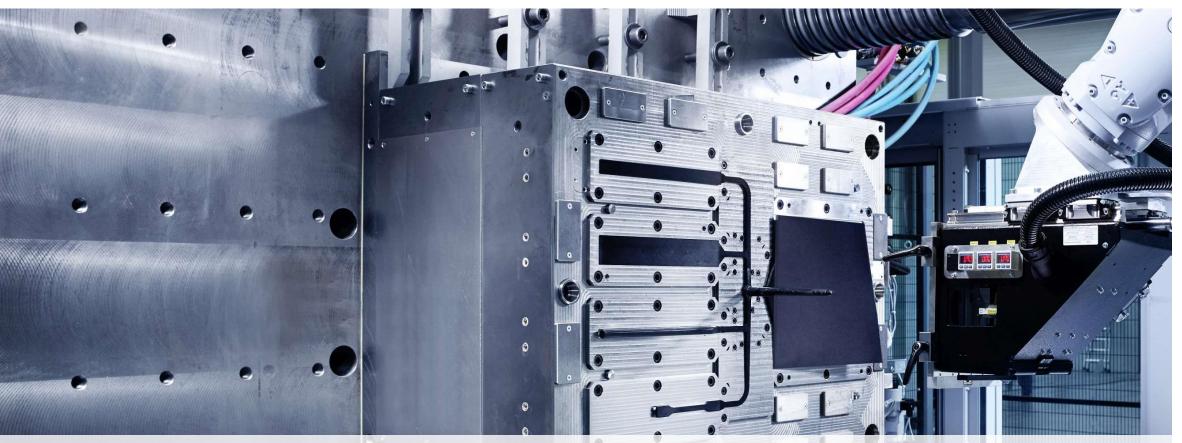
Prüfkörperwerkzeuge

- Spritzgießwerkzeuge zur Herstellung von Prüfkörpern und Benchmarkbauteilen
- Wechseleinsätze:
 - Flache Platte: 100 x 160 x 4 mm (alternative Wandstärken: 2 oder 2,5 mm)
 - Quader: 20 x 170 x 12 mm
 - Rundstab: 102 x 10 mm
 - Zugmessstab: 170 x 10 x 4 mm
 - (Messbereich: 10 mm breit)
 - Rippenstruktur: 300 x 26,5 x 25 mm

Anlagen, Werkzeuge und Peripherie in der Kunststofftechnik

Servopresse

- Umformung thermoplastischell
 Halbzeuge
- Nennkraft: 10.000 kN
- Tischgröße: 3.500 x 2.200 mm
- max. Einbauhöhe: 1.900 mm
- Hub: 100 bis 600 mm
- max. Werkzeuggewicht: 25 t
- Servo-Ziehkissen-Modul
- Handlingsroboter mit 230 kg max. Traglast und verschiedenen Greifersystemen (Klemm-, Saug- und Nadelgreifer, Spannrahmen für Platinen transfer)


IR-Erwärmungseinheiten

- max. Platinengröße: 1.500 x 900 mm bzw. 3.000 x 1.050 mm
- max. Erwärmungstemperatur: 440 °C

Kontakt

Dr.-Ing. Stefan KurtenbachLeiter Prozess- und Technologieentwicklung

T +49 2722 9784-543

Es.kurtenbach@acs-innovations.de

Georg Schöntauf Senior Specialist Kunststofftechnik

T +49 2722 9784-515 E g.schoentauf@acs-innovations.de